
Evaluate scalable and high-performance Node.js
Application Designs

Advanced Web Technology Project

Submitted to: Martin Lasak

Hafiz Umar Nawaz
Computer Science

TU Berlin
h.umarnawaz@gmail.com

Denisa Rucaj
Computer Science

TU Berlin
rucaj.d@gmail.com

Naveed Kamran
Computer Science

TU Berlin
naveedkamran4@gmail.com

Abstract​—The goal of this project is to measure the impact of

different application architectures and designs on scalability of a
simple Node application. We researched about different scalable
application architectures. We analyzed the impact of different
components in system in terms of performance and scalability. In
this project we used simple REST services built with Node.js. We
deployed our service on different instance configurations. For
example, a single machine instance or multiple host machines
using docker and nginx load balancer. Generally, the
performance metrics we considered for our experiments are
latency and throughput. We also carefully observed about elastic
scalability, and error rate.

Keywords—scalability. software architecture, software design,
get, insert, throughput, latency, error rate, load balancing.

I. INTRODUCTION
Nodejs has gained a lot of popularity in last few years,

because of being lightweight and rapid application
development. Another major reason for its popularity is its
based on ECMAScript 2015 (ES6) standard, which means that
javascript developers can write server side code as well.

Scalability is defined as number of transactions or user
requests processed concurrently without any delay or
degradation in service [1].

According to Stefan Tai, David Bermbach and Erik Wittern
[1], scalability is a general property of a system or service,
which describes whether said system compared to a base
configuration able to do handle more requests when deployed
on more resources. That is, scalability describes the
relationship between the change in available resources and the
resulting change in provided computation.

Elasticity, on the other hand, describes what happens during
the period of adding or removing computing resources (for
example, processing power, bandwidth, hard disk space or
memory capacity) how long does it take the system to adapt to

the new state and what is the impact on other qualities, e.g.,
performance, in the meantime.

Scalability can be achieved in two ways:

Scaling up / vertical scalability - Scaling up means
upgrading the current capabilities of computing resource. For
example, adding more hard disk space, memory, bandwidth or
computing power to existing node. Usually, scaling up is
expensive after a certain point of line. For example,
computation power could be increased up to a certain level
and after that level either it becomes very expansive or limit of
device capabilities comes into play. For example, CPU
computation power can not grow beyond a certain limit.

Scaling out or horizontal scalability - Scaling out means
adding more resources to the cluster. For example, new nodes.
Scaling out is comparatively easy to achieve as compared to
vertical scalability. Horizontal scalability could be achieved
by simply adding more nodes into the cluster. Horizontal
scalability is also inexpensive as compared to vertical
scalability.

Horizontal scalability can ensure higher scalability. However,
multiple nodes introduce complexity and some problems as
well. For example we have to take care of following questions:

How to distribute the requests to different nodes?

1. How to ensure state synchronization? State
synchronization involves data synchronization and user
session status synchronization etc.
2. What if one node goes down? For example, we can
have master slave nodes. Master node can listen the
heartbeat of slave nods and if some slave node goes down
then master can either prepare another node to handle the
requests or can simply give the workload to another node.
But, what if the master node goes down? In this case, some

SS18 - TU Berlin

slaves node needs to start behaving like a master. This is a
bit complex approach, but ensure high scalability.

Simply adding new resources does not always ensure high
scalability and elasticity. The new nodes need to be added
intelligently, such that more scalability could be achieved.

Other than the dimensions of scalability, here are different
algorithms or methods for achieving a scalable system:

1. Co-location - It means existence of data in a
physically connected and accessible space. If the data
is co-located then it is fast to access. For example,
co-location of data in memory or hard disk matters a
lot. If data is dispersed then latency can occur
because of searching for data onto another place. For
example, in case of reading data from hard disk, it
involves the hard disk read head to move to proper
sector and track.

2. Caching - Caching means, making the frequently
used data available from a faster memory access.
Caching helps to avoid latency and hence, helps in
achieving scalability. For example, if some data
structure usually needs to be read from hard disk then
we can keep it in memory such that it does not need
repeated reading from hard disk.

3. Divide and conquer - This approach is useful when
we have multiple compute resources. We can divide
the processing requests to be done on different
compute resources.

In this project, we have explored different options to make
Node.js applications more scalable. Therefore, we performed
different scalability benchmarking and checked how it would
affect the elasticity of the application. We tested scalability on
a very simple RESTful API Node.js application. The
scalability benchmarking tests include two different aspects of
testing:

1. Testing an application that does not involve any
database, but some computations were being
performed in memory.

2. Testing an application that have a database. Database
involvement means also assuring that the database
system scalability matches the application scalability.

A rest application performance refers to the quality and
efficiency (for a given set of hardware configurations, how
many requests could be handled) at which an application

functions. Many factors can affect application performance.
For example, bandwidth capacity, the number of concurrent
users on a network, application protocols and application
architecture itself.

For benchmarking the performance of the application we have
used following metrics:

1. Throughput ​(Measured in number of requests
handled per second). While measuring throughput we
took into account that if even a single request fails,
then we will consider that scenario as failed.

2. Latency ​(Latency is measured as the average time
that it takes to respond a request). Low latency shows
better performance.

3. Error rate (If we have any single error then we
considered that scenario as failed). Error could occur
because of non-availability of application, or
application can not handle the current workload or,
because of a runtime error or response is not received
within a specified time period (response timeout
error).

We used JMeter to perform the tests. JMeter can tell the
throughput for a test, but to measure the latency we need to
find it from JMeter execution logs.

II. RELATED WORK
Roy T. Fielding, and Richard N. Taylor have built an

architecture for IP/TCP/HTTP Redirection Based
Approaches, more straightforward, is shown how the typical
web applications architectures look like.

Fig. 1. Web Server Farm with Hardware Load-Balancing

1

Server [2].

In this architecture we have multiple web services which are
connected through simple networking interface. The user
request comes to load balancer after passing through firewall
and network router. The load balancer decides which web
server needs to respond for the requested resource.

Fig. 2. Single database and multiple application servers [3].

This architecture is based on single database server and
multiple application servers. The data come from external
resources and static content. The application server could be
added or removed depending upon the workload. The
application servers retrieve and send data to the same
Database storage, which has one backup server, in case of
downtime, fire or nature accidents. The common resources
could be deployed on a Content Delivery Network (CDN) to
avoid load on major instances. Our application is a simple
REST application and it does not have any resources to be
deployed on a CDN. Hence, we have not used CDN, but the
CDN shown here is just to elaborate the architecture.

All the external requests received are directed to the software
based load balancer which is responsible for keeping heartbeat
information of all running nodes. The load balancer selects

one of the node that needs to handle the request. Node
selection can be based on many parameters. For example:

1. Least connections to decide the minimum load per
node [4].

2. Least time, favours the servers with the lowest
average response times [4].

3. Applying round robin to decide in what way the load
will be sent to the nodes [4].

4. Generic hash or IP hash, Using hashing function to
decide a node. Hashing could be based on request IP
address, for example [4].

5. Randomly selecting a node
6. Leader election algorithm, which is a process used to

assign, via network a single process as the organizer
or leader of some tasks distributed among several
computers (nodes) [4].

III. OUR APPROACH

To test the scalability of the application we have developed a
small Review Application. We created a simple reviews
application that was build using MongoDB, NodeJS,
ExpressJS, Simple Frontend. It stores rating, comments text,
timestamps.

To be able to scale on different hosts, one scenario would be
to deploy databases on different machines from application
instances. Initially, were considered two databases for the
Review application, Apache Cassandra and MongoDB.
Below, is given a short description related to how the
scalability and high performance applies on them.

Cassandra is a column-based-store database. It stores the
column name with each data records, and the name of columns
can include data. A column in Cassandra consists of
column_name, value and timestamp. It is based on Multi Data
Replication and Virtual Nodes. ​Apache Cassandra has an
architecture adapted for scalability and high performance and
is best used for very large data [8].

MongoDB is a document-based-store database. It scales
horizontally using sharding. Sharding is a horizontal
partitioning of data. The user chooses a shard key, which
determines how the data in a collection will be distributed.
The data is split into ranges and distributed across multiple
shards. MapReduce Aggregation function can be used for
batch processing of data and aggregation operations.
MongoDB provides high-availability with replica sets [9].

2

To narrow the scope of the project, and due to limited time,
we decided to implement in our application only one database
and specifically, MongoDB. MongoDB package for Node.js
has a huge community support, that makes it easier to be
implemented on the Node.js applications.

So this way, was used only one database server. Though the
single database server is the single point of failure, but the
purpose of this project was to learn about the scalability of the
Node.js, and not the database server. That is why we did not
put much time on database server.

These were all possibilities, as mentioned in section II, to use
a load balancing method. But we have used least connections
and round robin algorithm, because

- Its a default method in NGINX and does not need any
extra configurations to make it working.

- It keeps all the nodes busy.

As our GET and POST requests almost take the same
processing power which means that if we divide the requests
to the existing computation resources then it must complete
almost in same time. So, we don’t really need to worry about
finding the least busy nodes and sending request to that node.

IV. SETUP

Hardware Configurations used for Experimentation:

CPU: Core i5 @ 2.6 GHz
RAM: 16 GB
Ubuntu 16.04, 16 Bit OS
Network: 100 Mbps

The application we created is simple Restful application
that creates (Http request type POST) and reads (Http request
type GET) review requests, which contain a text comment
and a rating number from 1 - 5. Every request is recorded by a
request id. After the request is posted or created, the
information is sent back as JSON data.

We followed the guides from this two resources [6], [7], [10] ,
[11].

Code Organization
.
├── app.js
├── docker-compose.yml
├── Dockerfile
├── nginx
│ ├── Dockerfile

│ ├── localhost.error_log
│ └── nginx.conf
├── node_modules
├── package.json
├── package-lock.json
├── README.md
├── resc
│ ├── presentations
│ └── testing
├── review
│ └── ReviewController.js
└── src

└── api
 ├── docker-compose.yml
 ├── nginx
 │ └── nginx.conf

├── node_modules
└── review
 └── ReviewController.js

About mongodb docker container

A volume parameter, which we have called data-volume, is
instantiated to store our mongo files, to ensure that the data
exceed even after the mongo container is deleted. This
parameter maps to the created data-volume in /data/db folder
where the mongo storage file rests.

About nginx.conf

Upstream is a module used by NGINX to load balance over
HTTP servers when using NGINX HTTP module. The
upstream module also defines how any individual request is
assigned to any of the upstream servers. We have defined
three upstream server. The reverse proxy is placed on front of
the Node.js server, defined with proxy_pass: http://node-app.
It is used to prevent Node.js server from direct internet traffic
and allows flexibility using multiple servers in load balancing
across the servers and in caching content.

Using NGINX as Node.js reverse proxy has following
advantages for our application [4]:

1. Managing Node.js crashes elegantly
2. Simplifying privilege handling and port assignment.

least_conn is an NGINX load balancing algorithm. For each
upstream application servers the max_fails directive is set to 3
and fail_timeout to 30 sec and the weight parameter instructs
NGINX to pass at least 10 connections to each server.

proxy_cache_bypass There are many scenarios that demand
that the request is not cached. For this, NGINX exposes a
proxy_cache_bypass directive that when the value is non

3

empty or non zero, the request will be sent to an upstream
server rather than be pulled from cache [4].

Below, are the different architecture scenarios we used for
experimentation.

First application architecture -- Single Node Application
Architecture

Fig. 3. Architecture with single Node.js instance

Second Application Architecture -- Multiple Node Instances
on Single Machine

Fig. 4. Application with multiple Node.js instances
In the architectures shown in Fig. 3., Fig. 4., Fig. 5. we have:

1. Nginx Instance: ​an instance for Nginx used as a load
balancer.

2. Node Application Instances: there were several
instances of our reviews NodeJS application. One
instance in Fig. 3., three to seven instances in Fig. 4.,
Fig. 5..

3. Database Instance: an instance for mongodb.

Each of the instances is running in separate Docker containers
[11]. In front of the Node.js application instances, is build a

single NGINX instance. The NGINX instance will reverse
proxy to the application instance and will load balance through
port 80 using a load balancer round robin fashion and least
connection algorithm. NGINX image runs in a separate
Docker container and it links to the other containers, Node.js
containers and MongoDB container. Docker compose
compose the application linking the containers. Each node is
build on mongo environment sending and retrieving data to
reviewdb through the port 27017. The images of containers
are build from pre-built docker images in Docker Hub. To
build the containers we have created one Dockerfile for each
container.[4]

There can be multiple clusters to handle a request from user.
Every instance is allowed to use all the available system
resources at any time. Hence, we did not restricted our
instances for any type of resources, for example, memory, disk
space, bandwidth, CPU cycles.

Third application architecture -- Multiple Node Containers on
Multiple Physical Machines

Fig. 5. Architecture with physical multiple servers
The request is handled as below:

1. A user from internet accessed the IP address or URL
of our application.

2. The request comes to Load balancer which is
responsible to route the request to proper NodeJS
node.

3. If a request is forwarded to NodeJS node it is
responsible to handle the request. Every node
instance is connected to mongodb using TCP IP. If a
request could not be handled then appropriate HTTP

4

status code is returned such that the client knows
about the error type.

4. If all the nodes are busy and there is no capacity to
handle a new request then the web server responds
with timeout http response.

V. REPEATING EXPERIMENT

To repeat the experiments, we need to build the
re-environment. In abstract, following things need to be
repeated:

1. Setup Docker and Docker Compose
2. Setup Application. Application setup instructions

could be found in readme file on GitHub.
3. Setup Docker instance monitoring environment

(CAdvisor). (This step is not mandatory and could be
skipped).

4. Setup JUnit Testing Framework. JUnit project is also
available in GitHub under resc folder.

5. Perform Testing

VI. PROJECT MANAGEMENT

For managing our project we used a combination of project
management tools.
We used Asana to create, sign to different members , set a
deadline, comment on our project tasks. Find the project on
this link [12].

We used Google drive to create and update our presentations
and other documents related to the project. As well, Github for
uploading our code, creating and updating other issues and
tasks. Find the project on this url [13].

VII. SCALABILITY AND PERFORMANCE BENCHMARKING

The purpose of scalability benchmarking was to:

1. Find out how many concurrent connections per client
will my single Node.js instance handle.

2. Find out how does the load capacity increase if more
of my instances are added to the cluster.

3. Find out the optimal point of performance. How does
a balanced and efficient mode of operation look like?

4. Ensuring optimal usage of resources (like: hard disk
usage, CPU usage and RAM usage).

5. Which application design offers best service stability
when memory, CPU, network limits on my instances
are reached or single instances die abruptly in your
cluster?

High Availability

In order to build even more highly performed applications,
should be taken into consideration also:

● Better performed Load Balancer - DNS Config and
Multiple LB to avoid single point of failure.

● Multiple Physical Machine (with LB on a third
machine)

● Multiple Application Instances (Docker), this adapted
to the needs of the application. Via the Load Balancer
can be controlled the deletion or adding of nodes.

● Database (Multi-node)

Tools Used for Benchmarking

Apache JMeter: Apache JMeter™ is open source software
written completely in Java. We used JMeter to load test
functional behavior and measure performance [14].

Benchmarking Framework Goals

Here were the goals of benchmarking framework:

● Determining the number of concurrent requests, a
single instance can handle.

● Finding service degradation and bottlenecks
o Service degradation can be because of I/O,

CPU or Memory.
o Solution: monitoring the resource usage on

instances.
● Finding load capacity increase or decrease if a single

node is added/removed
Determining balanced and efficient mode of operation.

VIII. SYSTEM MONITORING
During the tests it is needed to monitor resources such that

is known where could be a bottleneck. For example, it can be
monitoring network bandwidth, disk usage, CPU usage and
memory usage.

As our environment is based on docker containers, we were in
a need to monitor software for our docker instances.

We found an open source project [15] that can perform this
operations..

CAdvisor can monitor and generate the graphs for all

5

container physical resources.

Fig. 6. CAdvisor graphs showing resource usage report

Benchmarking Configurations

We setup Apache JMeter to send two types of requests:

1. Create Reviews (Post)
2. List Reviews (Get)

JMeter shows following parameters in the summary of the
tests:

1. Sample - number of requests sent
2. Avg - an Arithmetic mean for all responses (sum of

all times / count)
3. Minimal response time (ms)
4. Maximum response time (ms)
5. Deviation - see Standard Deviation article
6. Error rate - percentage of failed tests
7. Throughput - how many requests per second does

your server handle. Larger is better.
8. KB/Sec - self explanatory
9. Avg. Bytes - average response size

In addition, the initial testing was performed on following
parameters:

The List Review request only fetches a limited number of
records which we need to specify in the request parameters.
We have used 10 records. This was required because if we
fetch all the reviews in at the same time then the response
rendering time depends upon the size of the results. If there

are more results the response time would be higher and if there
are less results then the response time would be higher.

Fig. 7. Level one benchmarking results

Fig. 8. Level one benchmarking results graph

With a sample of 2756783, around 50.19% of requests failed
because of Response code: Non HTTP response code:
java.net.ConnectException Response message: Non HTTP
response message: Connection refused: connect. Response
headers: HTTPSampleResult fields: ContentType:
DataEncoding: null From error details it seems that the
bottleneck is happening from JMeter end
java.net.ConnectException: Connection refused: connect
It took over a night to execute 500 Threads and 10000 loop
count. Infact JMeter was behaving too slow and finally it it
crashed because of Uncaught Exception
java.lang.OutOfMemoryError: Java heap space. See log file
for details.

Initially, the Out of memory error started coming but it
continued performing tests and now its completely dead.
Unfortunately, it does not complete things in minutes. It takes
long time.Initially things were failing but it was executing the
tests. But after a long number of samples it completely
stopped working. For smaller number of threads it works. For
real huge data it does not. I still did not did any testing for
over a million requests.So it was expected, a single machine
cannot handle this load. For that thing I hope it would
completely not work. At least I did not expect this. On server
machines every MB of RAM causes extra dollars and we have
Core i5 reserved for only this task.

6

Fig. 9. Level one benchmarking results

This line graph explains the trend of throughput of single
machine considering multiple setups. We created the scenarios
of 1, 2, 3, 4 instances with respectively 700, 800, 850, 900
Clients connections and with 10 simultaneous GET and POST
requests per Client. In the graph is shown the average
throughput for different setups in the ideal cases with 0%
Error rate of requests sent. If we would increase the number of
Clients connected and requests per client the Error rate %
would increase. This is the reason why we came up with this
number of Clients connections and requests per client.

So, firstly on the single machine it was tested one instance
with 700 Clients and 10 GET and POST requests per client.
The average throughput performed with 0% Error was 459
GET requests sent and 439 POST requests sent.
Secondly, were tested two instances with 800 Clients and 10
GET and POST requests per Client. The average throughput
was 487 GET requests sent and 473 POST requests sent.
Thirdly, were tested three instances with 850 Clients and 10
GET and POST requests per Client. The average throughput
was 496 GET requests sent and 483 POST requests sent.
Lastly, were tested four instances with 900 Clients and 10
GET and POST requests per Client. The average throughput
was 495 GET requests sent and 485 POST requests sent.

It is noticed that after two instances, if we keep increasing the
number of instances per single machine, the performance stays
almost constant, does not get improved. From one instance to
three instances the performance is increased by 21%.

850 Clients - 700 Clients = 150 Clients
150 Clients / 700 Clients = 0.21
0.21 * 100 = 21%

Fig. 10. Multiple machines throughput

This line graph explains the trend of throughput of multiple
machines considering multiple setups.
We created the scenarios of 2, 3, 4, 5, 6, 7 instances with
respectively 1400, 1450, 1600, 1750, 1800, 1850 Clients
connections and with 10 simultaneous GET and POST
requests per Client.
In the graph is shown the average throughput for different
setups. The throughput showed 0% Error rate of requests sent
until the scenarios with 6 instances. When number of instances
was increased to 7 the Error rate % increased and the number
of throughput stayed constant.

1. On the two machine it were tested two instances with
1400 Clients and 10 GET and POST requests per
client. The average throughput performed with 0%
Error was 256 GET requests and 249 POST requests
sent.

2. Tested three instances with 1450 Clients and 10 GET
and POST requests per Client. The average
throughput was 301 GET requests and 291 POST
requests sent.

3. Thirdly, were tested four instances with 1600 Clients
and 10 GET and POST requests per Client. The
average throughput was 335 GET requests and 328
POST requests sent.

4. Next, were tested five instances with 1750 Clients
and 10 GET and POST requests per Client. The
average throughput was 373 GET requests and 365
POST requests sent.

5. Then, were tested 6 instances with 1800 Clients and
10 GET and POST requests per Client. The average
throughput was 393 GET requests and 387 POST
requests sent.

7

6. Lastly, we tested seven instances with 1850 Clients
and 10 GET and POST requests per Client. The
average throughput was 393 GET requests and 387
POST requests sent with more than 0.01% Error rate.

It is noticed that after six instances, if we keep increasing the
number of instances per two machines, the performance stays
almost constant, does not get improved.
From two instance to six instances the performance is
increased by 29%.

1800 Clients - 1400 Clients = 400 Clients
400 Clients / 1400 Clients = 0.29
0.29 * 100 = 29%

These results show that HTTP Get and Post Requests are
performing almost same time. As the POST Request does not
do any considerable computations. Also increasing the number
of nodes on a single machine does not ensure high scalability.
As the instances share the same host and docker container
needs to manage instances which is also an overhead.

The experiment shows that increasing number of nodes from 1
to 2 or 2 to 4 raised the throughput. But increasing the number
of nodes from 4 to 8 does not result to a better performance.
For example, using only one instance the throughput was 501,
but increasing docker instances to 4, reduced the throughput.
Increasing the instances number to 8 increased the throughput,
but it did not doubled the throughput. This means that docker
instances should be added when needed

IX. EVALUATION

Bottlenecks

● Network
● Application Server
● Database Scalability (Multi-node Database)
● Load Balancing algorithm - Least Connections /

Round Robin

Best Practices

1. Always use proper network infrastructure
2. HAProxy vs Nginx
3. Jmeter CLI
4. Test Environment on Seperate machine
5. cAdvisor for Docker Stats
6. Run Multiple Jmeter to reduce the weird pausing

X. FUTURE ARCHITECTURE

We propose a better architecture based on our experiences.

1. There must be multiple load balancers. Such that if
one load balancer crashes then the other one can
resume the workload.

2. A load balancer is connected to every node and it
uses some intelligent algorithm to identify least busy
node and directs the current request to that node.

3. There are multiple database instances and each
database is consistent.

Fig. 11. An system architecture that consists of multiple
nodes on multiple physical machines.

XI. CONCLUSIONS

We saw that an efficient mode of work depends on multiple
components in an architecture. For example it can be location
of host machines, capacity of design of scaling up and out
dynamically, and also updated technologies like container
solution can strongly support your application. For our rating
application we came up with a highly scalable application
design that can be used in your local cloud and for millions of
users. Throughout the evaluation of multiple designs, it gave
us a lot of new insights of enterprise application development.

Lessons Learnt

1. Building RESTful API with Node.js and Express

8

2. How to implement a load balancer in an application
architecture

3. Nginx as a reverse proxy and Load balancer
algorithms

4. Dockerizing a Node.js application
5. Building a scalable application
6. Testing an application scalability in different

scenarios.
7. How to manage in group a project similar to this

scenario.

REFERENCES

[1] Stefan Tai, David Bermbach and Erik Wittern, “Cloud

Service Benchmarking”, Springer International
Publishing AG 2017, pp. 21, in press.

[2] Ludmila Cherkasova, “FLEX: Load Balancing and
Management Strategy for Scalable Web Hosting Service”,
Hewlett-Packard Labs, 1501 Page Mill Road, Palo Alto,
CA 94303, USA, 2000, pp. 2in press.

[3] Roy T. Fielding, and Richard N. Taylor, “Principled
Design of the Modern web Architecture”, Irvine, 2002, in
press.

[4] Derek DeJonghe, “The complete NGINX cookbook”,
First Edition, O’Reilly, March 2017, 1.3 Load Balancing
methods, pp. 5, in press.

[5] Wikipedia contributors. (2018, May 16). Leader election.
In ​Wikipedia, The Free Encyclopedia​. Retrieved 18:57,
July 29, 2018, from
https://en.wikipedia.org/w/index.php​?
title=Leader_election&oldid=841536260

WEB REFERENCES

[6] Adnan Rahić, RESTful API design with Node.js,

h​ackernoon.com, Mar 5, 2017
https://hackernoon.com/restful-api-design-with-node-
js-26ccf66eab09

[7] Chris Sevilleja, Build a RESTful API Using Node and
Express 4, scotch.io, April 15, 2014
https://scotch.io/tutorials/build-a-restful-api-using-node-a
nd-express-4

[8] Wikipedia contributors. (2018, July 18). Apache
Cassandra. In ​Wikipedia, The Free Encyclopedia​.
Retrieved 20:05, July 29, 2018, from
https://en.wikipedia.org/w/index.php?title=Apache_Cassa
ndra&oldid=850826292

[9] Wikipedia contributors. (2018, July 26). MongoDB. In
Wikipedia, The Free Encyclopedia​. Retrieved 20:07, July
29, 2018, from
https://en.wikipedia.org/w/index.php?title=MongoDB&ol
did=852052919

[10] Anand Mani Sankar, A sample Docker workflow with
Nginx, Node.js and Redis, anandmanisankar.com, March
30, 2015
http://anandmanisankar.com/posts/docker-container-nginx
-node-redis-example/

[11] Aaron Alexander​, ​Load Balancing with Nginx and
Docker, sep.com, February 28, 2017
https://www.sep.com/sep-blog/2017/02/28/load-balancing
-with-nginx-and-docker/

[12] NodeJS Scalable Application Designs, D.R., N.K., U.N.
asana.com, May 20, 2018,
https://app.asana.com/0/687800635596872/68780063559
6872

[13] naveedkamran/nodejsapp, naveedkamran, RucajDenisa,
umar-nawaz, github.com, April 29, 2018,
https://github.com/naveedkamran/nodejsapp

[14] Apache JMeter, ​https://jmeter.apache.org

[15] CAdvisor ​https://github.com/google/cadvisor

9

https://en.wikipedia.org/w/index.php
https://hackernoon.com/restful-api-design-with-node-js-26ccf66eab09
https://hackernoon.com/restful-api-design-with-node-js-26ccf66eab09
https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4
https://scotch.io/tutorials/build-a-restful-api-using-node-and-express-4
https://en.wikipedia.org/w/index.php?title=Apache_Cassandra&oldid=850826292
https://en.wikipedia.org/w/index.php?title=Apache_Cassandra&oldid=850826292
https://en.wikipedia.org/w/index.php?title=Apache_Cassandra&oldid=850826292
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=852052919
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=852052919
https://en.wikipedia.org/w/index.php?title=MongoDB&oldid=852052919
http://anandmanisankar.com/posts/docker-container-nginx-node-redis-example/
http://anandmanisankar.com/posts/docker-container-nginx-node-redis-example/
https://www.sep.com/sep-blog/2017/02/28/load-balancing-with-nginx-and-docker/
https://www.sep.com/sep-blog/2017/02/28/load-balancing-with-nginx-and-docker/
https://app.asana.com/0/687800635596872/687800635596872
https://app.asana.com/0/687800635596872/687800635596872
https://github.com/naveedkamran/nodejsapp
https://jmeter.apache.org/
https://github.com/google/cadvisor

